Recent advances on strategies and technologies for isolation of bovine milk-derived exosomes: An overview

Authors

  • Vidhi Garg ICAR-National Bureau of Animal Genetic Resources, Karnal 132 001, Haryana, India Author
  • Manishi Mukesh ICAR-National Bureau of Animal Genetic Resources, Karnal 132 001, Haryana, India Author
  • Amarjeet ICAR-National Bureau of Animal Genetic Resources, Karnal 132 001, Haryana, India Author
  • Parvesh Kumari ICAR-National Bureau of Animal Genetic Resources, Karnal 132 001, Haryana, India Author
  • Ritu Mahajan Department of Biotechnology, Kurukshetra University, Kurukshetra 136119, Haryana, India Author
  • Monika Sodhi ICAR-National Bureau of Animal Genetic Resources, Karnal 132 001, Haryana, India Author

DOI:

https://doi.org/10.59317/1m1esz81

Keywords:

Milk, Exosomes, Biogenesis, Isolation techniques, Bovine

Abstract

Exosomes are small extracellular vesicles that play an important role in intercellular communication by facilitating the transfer of cell-specific constituents of the source cell to the recipient cell. They are secreted by various cell types and are available in all body fluids. Milk has been a part of the human diet since ages and is known to contain diverse bioactive components, including exosomes. Milk-derived exosomes (MDE) contain specific cargo with proteins, lipids, nucleic acids and other bioactive molecules that help in cell-to-cell communication and can alter the biological and physical processes of the recipient cells. These MDE can act as excellent nanocarriers for the delivery of drugs due to their stability and low immunogenicity. In this comprehensive review, the conventional isolation strategies based on ultracentrifugation, immunocapture, polymer-based precipitation, and chromatography and also the emerging technologies like microfluidic chips are discussed in detail. These provide functionally intact exosomes with high recovery rate. The available methods have one or the other limitations which pose challenges for the downstream analysis. Hence, integration of different methods is the most effective way to isolate exosomes with high recovery rate, purity and intact biological functions that open new avenues for exploring the therapeutic potential of MDE improving health and developing innovative medical interventions.

Downloads

Download data is not yet available.

References

Adriano, B., Cotto, N. M., Chauhan, N., Jaggi, M., Chauhan, S. C. and Yallapu, M. M. 2021. Milk exosomes: Nature’s abundant nanoplatform for theranostic applications. Bioactive Materials 6(8): 2479-2490.

Badawy, A., El-Magd, M. A. and AlSadrah, S. A. 2018. Therapeutic Effect of Camel Milk and Its Exosomes on MCF7 Cells In Vitro and In Vivo. Integrative Cancer Therapies 17(4): 1235–1246.

Blans, M., Hansen, L. V., Sørensen, M. L., Hvam, K. A., Howard, K. A., Möller, A., Wiking, L., Larsen, L. B. and Rasmussen, J. T. 2017. Pellet-free isolation of human and bovine milk extracellular vesicles by size-exclusion chromatography. Journal of Extracellular Vesicles 6(1).

Butreddy, N., Kommineni, N. and Dudhipala, N. 2021. Exosomes as naturally occurring vehicles for delivery of biopharmaceuticals: Insights from drug delivery to clinical perspectives. Nanomaterials 11(6): p.1481.

Chen, C., Liu, L., Ma, F., Wong, C. W., Guo, X. E., Chacko, J. V., Farhoodi, H. P., Zhang, S. X., Zimak, J., Ségaliny, A., Riazifar, M., Pham, V., Digman, M. A., Pone, E. J. and Zhao, W. 2016. Elucidation of Exosome Migration Across the Blood–Brain Barrier Model In Vitro. Cellular and Molecular Bioengineering 9(4):509–529.

Chen, H., Wang, L., Zeng, X., Schwarz, H., Nanda, H., Peng, H. S. and Zhou, Y. 2021. Exosomes, a new star for targeted delivery. Frontiers in Cell and Developmental Biology 9: 751079.

Chen, Q., Xi, Y., Ye, R. S., Cheng, Q. E., Qi, S. B., Wang, G., Shu, S. B., Na, L., Xi, T., Zhu, Q. Y., Jiang, Q., Li, Y. and Zhang, Y. 2014. Exploration of microRNAs in porcine milk exosomes. BMC Genomics 15(1).

Cho, W., Jo, Y., Heo, Y., Kang, J. Y., Kwak, R. and Park, J. 2016. Isolation of extracellular vesicle from blood plasma using electrophoretic migration through porous membrane. Sensors and Actuators B: Chemical 233: pp.289-297.

Corso, I., Mäger, A., Lee, Y., Görgens, A., Bultema, J., Giebel, B., Wood, M. J. A., Nordin, J. Z. and Andaloussi, S. E. L. 2017. Reproducible and scalable purification of extracellular vesicles using combined bind-elute and size exclusion chromatography. Scientific Reports 7(1).

Davis, N., Phillips, H., Tomes, J. J., Swain, M. T., Wilkinson, T. J., Brophy, P. M. and Morphew, R. M. 2019. The importance of extracellular vesicle purification for downstream analysis: A comparison of differential centrifugation and size exclusion chromatography for helminth pathogens. PLoS Neglected Tropical Diseases 13(2).

Doyle, L. M. and Wang, M. Z. 2019. Overview of extracellular vesicles, their origin, composition, purpose and methods for exosome isolation and analysis. Cells 8(7): p.727.

Escola, M., Kleijmeer, M. J., Stoorvogel, W., Griffith, J. M., Yoshie, O. and Geuze, H. J. 1998. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. Journal of Biological Chemistry 273(32):20121–20127.

Gao, N., Guo, H. Y., Zhang, H., Xie, X. L., Wen, P. C. and Ren, F. Z. 2019. Yak-milk-derived exosomes promote proliferation of intestinal epithelial cells in a hypoxic environment. Journal of Dairy Science 102(2):985–996.

González, I., Martín-Duque, P., Desco, M. and Salinas, B. 2020. Radioactive labeling of milk-derived exosomes with99mTC and in vivo tracking by SPECT imaging. Nanomaterials 10(6).

Gu, Y., Chen, C., Mao, Z., Bachman, R., Becker, R., Rufo, J., Wang, Z. and et al. 2021. Acoustofluidic centrifuge for nanoparticle enrichment and separation. Science advances 7(1).

Gámez-Valero, M., Monguió-Tortajada, L., Carreras-Planella, M. L., Franquesa, K., Beyer, K. and Borràs, F. E. 2016. Size-Exclusion Chromatography-based isolation minimally alters Extracellular Vesicles’ characteristics compared to precipitating agents. Scientific Reports 6(1):33641.

Han, K. Y., Dugas-Ford, J., Seiki, M., Chang, J. H. and Azar, D. T. 2015. Evidence for the involvement of MMP14 in MMP2 processing and recruitment in exosomes of corneal fibroblasts. Investigative Ophthalmology and Visual Science 56(9): 5323-5329.

Hauser, S., Wang, V. and Didenko, V. V. 2017. Apoptotic bodies: Selective detection in extracellular vesicles. Methods in Molecular Biology 1554: 193–200.

He, D., Zhu, D., Wang, J. and Wu, X. 2019. A highly efficient method for isolating urinary exosomes. International Journal of Molecular Medicine 43(1):83–90.

Hessvik, P. and Llorente, A. 2018. Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences 75:pp.193-208.

Hill, R. and Newburg, D. S. 2015. Clinical applications of bioactive milk components. Nutrition Reviews 73(7):463–476.

Izumi, M., Tsuda, Y., Sato, Y., Kosaka, N., Ochiya, T., Iwamoto, H., Namba, K. and Takeda, Y. 2015. Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. Journal of Dairy Science 98(5):2920–2933.

Jeppesen, K., Hvam, M. L., Primdahl-Bengtson, B., Boysen, A. T., Whitehead, B., Dyrskjøt, L., Ørntoft, T. F., Howard, K. A. and Ostenfeld, M. S. 2014. Comparative analysis of discrete exosome fractions obtained by differential centrifugation. Journal of Extracellular Vesicles 3(1).

Jiang, X., You, L., Zhang, Z., Cui, X., Zhong, H., Sun, C., Ji, C. and Chi, X. 2021. Biological Properties of Milk-Derived Extracellular Vesicles and Their Physiological Functions in Infant. Frontiers in Cell and Developmental Biology 9: p.693534.

Kim, J. Y., Rhim, W. K., Yoo, Y. I., Kim, D. S., Ko, K. W., Heo, Y., Park, C. G. and Han, D. K. 2021. Defined MSC exosome with high yield and purity to improve regenerative activity. Journal of Tissue Engineering 12.

Konoshenko, M. Y., Lekchnov, E. A., Vlassov, A. V. and Laktionov, P. P. 2018. Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. BioMed research international 2018.

Kumar, N., Chaudhuri, A., Aqil, F., Dehari, D., Munagala, R., Singh, S., Gupta, R. C. and Agrawal, A. K. 2022. Exosomes as Emerging Drug Delivery and Diagnostic Modality for Breast Cancer: Recent Advances in Isolation and Application. Kumar.Cancers 14(6): p.1435.

Li, A., Hock, A., Wu, R. Y., Minich, A., Botts, S. R., Lee, C., Antounians, L., Miyake, H., Koike, Y., Chen, Y., Zani, A., Sherman, P. M. and Pierro, A. 2019. Bovine milk-derived exosomes enhance goblet cell activity and prevent the development of experimental necrotizing enterocolitis. PLoS ONE 14(1).

Li, H., Han, Z., Zhao, K., Yang, K., Xin, M., Zhou, L., Chen, S., Zhou, S., Tang, Z., Ji, H. and Dai, R. 2022. Application of exosomes in the diagnosis and treatment of pancreatic diseases. Stem Cell Research and Therapy 13: 153.

Li, M., Kaslan, S., Lee, S. H., Yao, J. and Gao, Z. 2017. Progress in exosome isolation techniques. Theranostics 7(3):p.789.

Lobb, J., Becker, M., Wen, S. W., Wong, C. S. F., Wiegmans, A. P., Leimgruber, A. and Möller, A. 2015. Optimized exosome isolation protocol for cell culture supernatant and human plasma. Journal of Extracellular Vesicles 4(1).

Mecocci, S., Gevi, F., Pietrucci, D., Cavinato, L., Luly, F. R., Pascucci, L., Petrini, S., Ascenzioni, F., Zolla, L., Chillemi, G. and Cappelli, K. 2020. Anti-inflammatory potential of cow, donkey and goat milk extracellular vesicles as revealed by metabolomic profile. Nutrients 12(10): p.2908.

Melnik, C. and Schmitz, G. 2019. Exosomes of pasteurized milk: potential pathogens of Western diseases. Journal of Translational Medicine 17(1).

Montaner-Tarbes, S., Novell, E., Tarancón, V., Borràs, F. E., Montoya, M., Fraile, L. and d. Portillo, H. A. 2018. Targeted-pig trial on safety and immunogenicity of serum-derived extracellular vesicles enriched fractions obtained from Porcine Respiratory and Reproductive virus infections. Scientific reports 8(1): p.17487.

Musumeci, T., Leonardi, A., Bonaccorso, A., Pignatello, R. and Puglisi, G. 2018. Tangential Flow Filtration Technique: An Overview on Nanomedicine Applications. Pharmaceutical nanotechnology 6(1): pp.48-60.

Müller, L., Hong, C. S., Stolz, D. B., Watkins, S. C. and Whiteside, T. L. 2014. Isolation of biologically active exosomes from human plasma. Journal of Immunological Methods 411:55–65.

Nordin, J. Z., Lee, Y., Vader, P., Mäger, I., Johansson, H. J., Heusermann, W., Wiklander, O. P. B., Hällbrink, M., Seow, Y., Bultema, J. J., Gilthorpe, J., Davies, T., Fairchild, P. J., Gabrielsson, S., Meisner-Kober, N. C., Lehtiö, J., Smith, C. I. E., Wood, M. J. A. and Andaloussi, S. E. L. 2015. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine: Nanotechnology, Biology and Medicine 11(4):879–883.

Ortega-Anaya, J. and Jiménez-Flores, R. 2019. Symposium review: The relevance of bovine milk phospholipids in human nutrition—Evidence of the effect on infant gut and brain development. Journal of Dairy Science 102(3):2738-2748.

Raposo, W. and Stoorvogel. 2013. Extracellular vesicles: exosomes, microvesicles, and friends. Journal of Cell Biology.

Sanwlani, P., Fonseka, S. V., Chitti, S. V. and Mathivanan, S. 2020. Milk-derived extracellular vesicles in inter-organism, cross-species communication, and drug delivery. Proteomes 8(2): p.11.

Sedykh, S. E., Purvinish, L. V., Monogarov, A. S., Burkova, E. E., Grigor’eva, A. E., Bulgakov, D. V., Dmitrenok, P. S., Vlassov, V. V., Ryabchikova, E. I. and Nevinsky, G. A. 2017. Purified horse milk exosomes contain an unpredictable small number of major proteins. Biochimie Open 4: 61–72.

Shao, H., Im, H., Castro, C. M., Breakefield, X., Weissleder, R. and Lee, H. 2018. New Technologies for Analysis of Extracellular Vesicles. Chemical reviews 118(4): pp.1917-1950.

Sidhom, K., Obi, P. O. and Saleem, A. 2020. A review of exosomal isolation methods: Is size exclusion chromatography the best option? International journal of molecular sciences 21(18): p.6466.

Simons, M. and Raposo, G. 2009. Exosomes - vesicular carriers for intercellular communication.Current opinion in cell biology 21(4): pp.575-581.

Sukreet, S., Silva, E. S. R., Adamec, B. V., Cui, J. and Zempleni, J. 2019. Galactose and sialo-galactose modifications in glycoproteins on the surface of bovine milk exosome are essential for exosome uptake in non-bovine species (OR34-07-19). Current Developments in Nutrition 3: 3013178.

Tauro, J., Greening, D. W., Mathias, R. A., Ji, H., Mathivanan, S., Scott, A. M. and Simpson, R. J. 2012. Comparison of ultracentrifugation, density gradient separation and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods, 56(2):293–304.

Vogel, R., Coumans, F. A. W., Maltesen, R. G., Böing, A. N., Bonnington, K. E., Broekman, M. L., Broom, M. F., Buzás, E. I., Christiansen, G., Hajji, N. T., Kristensen, S. R., Kuehn, M. J., Lund, S. M., Maas, S. L. N., Lund, R., Schnoor, R., Scicluna, B. J., Shambrook, M. J., et al. 2016. A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing. Journal of Extracellular Vesicles 5(1).

Wang, P., Ma, D. H., Kim, B., Liu, F. and Demirci, U. 2021. Towards microfluidic-based exosome isolation and detection for tumor therapy. Nano Today 37:101066.

Weber, J. A., Baxter, D. H., Zhang, S., Huang, D. Y., Huang, K. H., Lee, M. J., Galas, D. J. and Wang, K. 2010. The microRNA spectrum in 12 body fluids. Clinical Chemistry 56(11): 1733–1741.

Yamada, T., Inoshima, Y., Matsuda, T. and Ishiguro, N. 2012. Comparison of methods for isolating exosomes from bovine milk. Journal of Veterinary Medical Science 74(11):1523–1525.

Yang, D., Zhang, W., Zhang, H., Zhang, F., Chen, L., Ma, L., Larcher, L. M., Chen, S., Liu, N., Zhao, Q., Tran, P. H. L., Chen, C., Veedu, R. N. and Wang, T. 2020. Progress, opportunity, and perspective on exosome isolation - Efforts for efficient exosome-based theranostics. Nutrients, 12(10):1–25.

Yu, Q., Lin, X., Zhan, J. K. and Liu, Y. S. 2020. Roles and functions of exosomal non-coding RNAs in vascular aging. Aging and disease 11(1): p.164.

Zaborowski, M. P., Balaj, L., Breakefield, X. O. and Lai, C. P. 2015. Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience 65(8): 783-797.

Zarovni, N., Corrado, P., Guazzi, D., Zocco, E., Lari, G., Radano, J., Muhhina, J., Fondelli, C., Gavrilova, J. and Chiesi, A. 2015. Integrated isolation and quantitative analysis of exosome-shuttled proteins and nucleic acids using immunocapture approaches. Methods 87:46–58.

Zhang, H., Ma, Y., Xie, Y., An, Y., Huang, Y., Zhu, Z. and Yang, C. J. 2015. A controllable aptamer-based self-assembled DNA dendrimer for high-affinity targeting, bioimaging, and drug delivery. Scientific Reports 5.

Zhang, M., Jin, K., Gao, L., Zhang, Z., Li, F., Zhou, F. and Zhang, L. 2018. Methods and Technologies for Exosome Isolation and Characterization. Small Methods 2(9): p.1800021

Published

21-09-2024

How to Cite

Recent advances on strategies and technologies for isolation of bovine milk-derived exosomes: An overview. (2024). The Indian Journal of Animal Genetics and Breeding, 43-51. https://doi.org/10.59317/1m1esz81

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.